Time: 3 Hours

Max. Marks: 60

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Attempt Five questions in all, selecting one question each from Section A, B, C and D. Section E is compulsory.

SECTION - A

1. (a) Prove that the sequence:

$$\left\{\frac{2n-7}{3n+2}\right\}$$

is (i) monotonically increasing (ii) bounded and (iii) convergent. (5)

(b) Show that the alternating series:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$
 is convergent. (5)

2. (a) Find the radius of convergence of the power series:

$$\sum_{n=1}^{\infty} \frac{\left| (n-1) \right|}{n^n} x^n \tag{5}$$

(b) Show that the function represented by:

 $\sum_{n=1}^{\infty} \frac{\sin nx}{n^3}$ is differentiable for every x and its derivative is

$$\sum_{n=1}^{\infty} \frac{\cos nx}{n^2}.$$
 (5)

MA-101L

SECTION - B

- 3. (a) State and prove Canchy's Mean Value Theorem. (5)
 - (b) By using lagrange's Mean Value Theorem, prove that,
 |sin x sin y| ≤ |x y| for all x, y ∈ R.
 (5)
- 4. (a) Find the area bounded by the parabola y=2x-x² and the x-axis. (5)
 - (b) Find the volume of the solid generated by revolving the ellipse:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
about the x-axis. (5)

SECTION - C

5. (a) Discuss the continuity of f(x, y) at (0, 0) where

$$f(x,y) = \begin{cases} \frac{2xy^2}{x^3 + y^3} &, & (x,y) \neq (0,0) \\ 0 &, & (x,y) = (0,0) \end{cases}$$
 (5)

(b) Find all the maxima and minima of the function:

$$f(x,y) = x^3 + y^3 - 63(x+y) + 12xy$$
 (5)

6. (a) If $u = \sin^{-1} \left(\frac{x^2 + y^2}{x + y} \right)$, show that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \tan u \tag{5}$$

(b) If $x = r \cos \theta$, $y = r \sin \theta$, prove that

$$\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} = 0 \text{ except when ...} = 0, y = 0.$$
 (5)

[P.T.O.]

MA-101L

SECTION - D

7. (a) Evaluate:

$$\int_{1}^{2} \int_{0}^{3} (x^{2} + y^{2}) dx dy.$$
 (5)

(b) Change the order of integration and evaluate the integral:

$$\int_{0}^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy dx.$$
 (5)

8. (a) Evaluate:

$$\iiint (x+y+z) dx dy dz \text{ over the tetrahedron bounded by}$$
the planes x=0, y=0, z=0, x+y+z=1. (5)

(b) Find the area enclosed by the parabolas $y^2 = 4ax$ and $x^2 = 4ay$, a > 0 by using the double integration. (5)

SECTION - E (Compulsory)

- 9. Attempt all the questions:
 - (a) Define convergent sequence.
 - (b) State Couchy's Second Theorem on Limits.
 - (c) Define absolutely convergent series.
 - (d) Find the value of c of the Lagrange's mean value theorem,

if
$$f(x) = x(x-1)(x-2)$$
 in $\left[0, \frac{1}{2}\right]$.

- (e) Define rectifiable curve.
- (f) Prove that:

$$\lim_{(x,y)\to(0,0)}\frac{xy}{\sqrt{x^2+y^2}}=0.$$

4 MA-101L

(g) State Euler's theorem for a homogeneous function of three variables.

- (h) What are the necessary condtions for maxima and minima of f(x,y)?
- (i) Find the area of the circle using the double integration.
- (j) State Cauchy's Root Test. (10×2=20)